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Abstract

The question of whether object recognition is orientation-invariant or orientation-dependent was

investigated using a repetition blindness (RB) paradigm. In RB, the second occurrence of a repeated

stimulus is less likely to be reported, compared to the occurrence of a different stimulus, if it occurs

within a short time of the first presentation. This failure is usually interpreted as a difficulty in

assigning two separate episodic tokens to the same visual type. Thus, RB can provide useful

information about which representations are treated as the same by the visual system. Two

experiments tested whether RB occurs for repeated objects that were either in identical orientations,

or differed by 30, 60, 90, or 1808. Significant RB was found for all orientation differences, consistent

with the existence of orientation-invariant object representations. However, under some

circumstances, RB was reduced or even eliminated when the repeated object was rotated by 1808,

suggesting easier individuation of the repeated objects in this case. A third experiment confirmed

that the upside-down orientation is processed more easily than other rotated orientations. The results

indicate that, although object identity can be determined independently of orientation, orientation

plays an important role in establishing distinct episodic representations of a repeated object, thus

enabling one to report them as separate events.

q 2004 Elsevier B.V. All rights reserved.
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The human visual system is extremely efficient at recognising objects under a wide variety

of conditions, including changes in illumination, size and viewpoint. This remarkable

feature is termed object constancy. A number of theories of object recognition have been

proposed to account for object constancy, and in particular for object recognition from
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different viewpoints. These theories can be grouped into two broad families: those that

posit that object recognition is viewpoint-dependent and those proposing that object

recognition is viewpoint-invariant.

Viewpoint-dependent recognition is postulated on the basis that there is often a

monotonic decrease in performance (as measured by reaction time and/or accuracy) with

increasing misorientation from a preferred view of an object (Jolicoeur, 1985; Tarr &

Pinker, 1989). Viewpoint-dependent theories state that objects are represented in a viewer-

centred frame of reference determined by the location of the object relative to the observer.

With respect to the nature of the object representation, some theorists believe that

representations of objects are stored in a single canonical orientation (e.g. Palmer, Rosch,

& Chase, 1981), while others argue that multiple views are stored, corresponding to

different instances encountered during the course of one’s experience with the object

(Bülthoff & Edelman, 1992; Tarr & Pinker, 1989). Each model has implications for the

kinds of transformations involved: the former requires that novel views of objects be

recognised by transforming the input image to the stored canonical representation

(Jolicoeur, 1985; Ullman, 1989), the latter by transformation to the nearest stored view

(Tarr, 1995; Tarr & Pinker, 1989). A further possibility that has been proposed is that

recognition of novel views of objects might occur through interpolation between

previously stored views (e.g. Bülthoff & Edelman, 1992; Edelman, 1999).

In contrast, viewpoint-invariant recognition is inferred if there is little cost to

recognition when changing the orientation or viewpoint (Biederman & Gerhardstein,

1993; Corballis, Zbrodoff, Shetzer, & Butler, 1978). Viewpoint-invariant theories of

object recognition postulate that objects are represented on the basis of distinctive features

and their inter-relations, which remain constant across changes in viewpoint (Biederman,

1987; Corballis, 1988; Marr, 1980). Perhaps the most influential theory in this category is

that of David Marr (Marr, 1980; Marr & Nishihara, 1978). According to this theory, one

step towards object recognition is to construct a visual representation that provides

information about edges and surfaces as defined from the viewer’s perspective. This

‘2 1
2

-D sketch’ is considered the richest purely bottom-up visual representation, but it is not

sufficient to enable object recognition. Recognition can only be achieved once a 3D object

representation is constructed, in which the object features are defined with respect to a

reference frame centred on the object rather than on the viewer. This object-centred

representation allows recognition from various views, because its structure is not affected

by rotations and changes in viewing conditions. Several other authors have proposed that

recognition could proceed largely independently of any reference frame, for example

through the identification of salient features (Corballis, 1988; Deutsch, 1955; Humphreys

& Riddoch, 1984; Warrington & James, 1986). Corballis (1988) has argued that, while this

is a relatively crude recognition process, it is sufficient to activate a stored representation

that contains more elaborate information about the object, including information about the

object’s internal reference frame (i.e. the location of its principal axes). This reference

frame could then be applied to the visual input to refine the initial recognition process.

Note that the principal difference between Corballis’ and Marr’s theories is that Marr’s

theory states that a viewpoint-dependent representation is a precursor to the formation of

an object-centred representation, whereas Corballis argues that recognition is achieved

before a reference frame is assigned to the object, with the obvious implication that
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the activation of an object representation in memory may bypass a viewer-centred

representation.

Recently, there have been a number of reports of neurological patients who

demonstrate intact, or near intact, recognition of objects presented in different orientations,

while at the same time being unable to determine the orientation of the object (Harris,

Harris, & Caine, 2001; Karnath, Ferber, & Bülthoff, 2000; Turnbull, Beschin, & Della

Sala, 1997; Turnbull, Laws, & McCarthy, 1995). For example, such patients have no

difficulty in recognising an upside-down dog, but are as likely as not to say that it is in its

canonical (upright) orientation. It has been argued that these patients provide evidence for

the existence of an orientation-independent route to object recognition (Turnbull et al.,

1997). As such, they appear to provide support for viewpoint-invariant theories of object

recognition, in particular that proposed by Corballis (1988).

However, the finding that recognition of rotated objects can be achieved in the absence

of knowledge of object orientation need not necessarily imply that object recognition itself

is orientation-invariant. For example, it is still possible that recognition is based on

viewpoint-dependent representations which are not available to conscious awareness,

while a separate mechanism is responsible for explicitly coding the orientation of the

object, and it is the latter mechanism that is impaired in patients with agnosia for object

orientation (Harris et al., 2001). This idea receives some support from the fact that a

number of patients with agnosia for object orientation demonstrate some residual

sensitivity to orientation, particularly the upright canonical orientation of objects

(and sometimes also the upside-down orientation), even though they cannot use this

information in a flexible and explicit way (Harris et al., 2001; Karnath et al., 2000). Such

findings are somewhat difficult to reconcile with a completely orientation-independent

object representation.

In the present study, we address the question of whether object representations

unavailable to conscious awareness are orientation-dependent or orientation-invariant,

using the paradigm of repetition blindness (RB) (Kanwisher, 1987). RB refers to a failure to

detect the second occurrence of a repeated item under conditions of rapid serial visual

presentation (RSVP), when it is presented within approximately 400 ms of the first member

of the repeated pair. This failure to report a repeated item is not due to a limitation in short

term memory capacity or forward masking, because a different item presented in the same

temporal position is usually detected and remembered successfully. Thus, RB represents an

example of implicit recognition of the repeated item, because some form of recognition

must take place to give rise to the repetition effect, yet the repeated item is not consciously

perceived. It is tempting to infer that RB reflects some kind of perceptual or neural

refractoriness, such that, once a representation of an item has been activated, its recognition

threshold is elevated for a short period of time, making it more difficult to recognise on a

subsequent occasion. However, there is evidence that this is not actually the case. Previously

it has been found that subjects are in fact better at reporting an item if they have seen it earlier

in the list, provided they did not have to respond to that first occurrence (Kanwisher, 1987,

Exp. 3). Given this finding, Kanwisher (1987) proposed that RB results from a failure to

assign two separate tokens to the same visual type. Types, which are long-term

representations stored in memory, are distinguished from tokens, which are episodic

representations of particular visual types activated during a perceptual task (see also
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Kahneman & Treisman, 1984; Kahneman, Treisman, & Gibbs, 1992). Thus, Kanwisher’s

‘token individuation hypothesis’ states that RB arises because, once a type has been token

individuated, it becomes unavailable for subsequent token individuation for a short period

of time. This precludes the encoding of the repeated items as separate events.

In a subsequent elaboration of the type–token model, Chun (1997) proposed a

two-stage process of tokenisation. In the first stage, identity information (visual type) and

its position in the RSVP stream (spatio-temporal token) are extracted in parallel by two

different processing modules. The spatio-temporal tokens confer episodic distinctiveness

of target relevant events. However, before this information becomes accessible for overt

report, it must undergo consolidation, with visual types and spatio-temporal tokens being

bound together to create an object token, similar to the notion of object file proposed by

Kahneman and Treisman (1984). Object tokenisation is an attention-demanding and

capacity-limited process, creating a potential bottleneck that introduces a delay for

subsequent items, during which the initial representation (either type or spatio-temporal

token) of that item is lost. Chun’s model explains RB as a failure to consolidate multiple

spatio-temporal tokens into separate object tokens.

RB can be useful in addressing the question of which representations are treated as the

same by the visual system, in the absence of spatio-temporal information provided by

episodic tokens. For example, if object representations stored in memory are orientation-

invariant, we would expect to see equivalent RB for identical (repeated) objects presented

in different orientations, because they would converge on the same object representation.

On the other hand, if object representations are orientation-dependent, then one would not

necessarily predict the same amount of RB for differently oriented instances of the same

object. One possible scenario is that objects are represented in memory as a collection of

specific views (Tarr & Bülthoff, 1995; Tarr & Pinker, 1989), in which case one would

expect no RB between repeated objects presented in different orientations, because they

would activate distinct memory representations. Alternatively, if a single viewpoint-

dependent representation (e.g. the canonical view) is stored in memory and a

normalisation process is required to match a rotated exemplar to this stored representation,

then one might expect the RB effect to vary as a function of the degree of rotation from the

canonical view.

Kanwisher, Yin, and Wojciulik (1999) have reported a series of experiments using RB

to explore various aspects of object recognition, amongst them the effect of orientation and

viewpoint changes on the accuracy of perceiving a repeated object. With respect to

orientation, they found that a 308 rotation in the picture-plane resulted in as much RB as

presenting the two objects in the same orientation, and concluded that the object

representations giving rise to RB are orientation-invariant. This conclusion was

strengthened by the finding that RB also occurred for objects photographed from different

viewpoints (i.e. depth rotations). However, one limitation of the Kanwisher et al.

experiment is that it only tested for relatively small differences in picture-plane

orientation. Some studies have shown that rotations of 308 in the picture-plane can have

negligible effects on recognition, whereas larger rotations lead to significant decrease in

recognition accuracy, suggesting an orientation-dependent process for these larger

rotations (Lawson & Jolicoeur, 1998, 2003). Similarly, neurophysiological recordings in

monkeys’ superior temporal sulcus revealed that although neuronal responses to faces are
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primarily viewpoint-specific, these neurons also respond reasonably strongly to

orientations close to their preferred orientation (Ashbridge, Perrett, Oram, & Jellema,

2000). Given this evidence, it seems a little premature to conclude that the object

representations giving rise to RB are completely orientation-invariant.

Thus, the aim of the present study was to determine whether object representations

generated outside conscious awareness are orientation-dependent or orientation-invariant.

To this end, we used a RB paradigm based on that used by Kanwisher et al. (1999), but

expanded to include a larger range of orientations. If significant RB is obtained across all

these orientations, then we can make a strong case that these object representations are

indeed orientation-invariant. Conversely, a failure to find RB for some orientations, or a

systematic modulation of the RB effect as a function of orientation, would indicate that

these representations are at least partially sensitive to orientation. If such orientation-

dependence were observed, a further aim was to determine which orientations lead to less

RB or, in other words, appear to be better discriminated by the visual system.

1. Experiment 1

Experiment 1 investigated whether RB occurs for two repeated objects that were either

in identical orientations (both upright) or differed by 30, 60, 90 or 1808. The task required

participants to report three pictures presented in rapid succession, for 100 ms each. The

critical items were the first picture (C1, or critical item 1) and the third picture (C2, or

critical item 2); these were either the same object (repeated condition) or different objects

(non-repeated condition). The intervening item between C1 and C2 served as a distractor.

Lower performance on repeated trials compared to non-repeated trials is indicative of RB.

1.1. Method

1.1.1. Subjects

Twenty-four first year psychology students (7 males), aged 19–46 years (mean ¼ 25),

participated in the experiment in exchange for course credit.

1.1.2. Apparatus

Stimuli were presented on a Dell Flat Trinitron monitor with 120 Hz vertical refresh

rate controlled by a Dell PC computer. The experiment was constructed and run using

DMDX software (Forster & Forster, 2003).

1.1.3. Stimuli and design

The stimuli were 64 pictures from the Snodgrass and Vanderwart (1980) corpus, chosen

to have a well-defined canonical upright orientation. They were presented as black line

drawings on a white background and subtended a visual angle of approximately 128 at the

viewing distance of 45 cm. Three masks were created using random geometrical shapes of

similar line thickness and density as the pictures.

Three independent variables were manipulated in a 2 £ 2 £ 5 within-subject design

(see Fig. 1). The first variable was the relationship between the two critical items: repeated
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(same object) or non-repeated (different object). The second variable was whether C1 or

C2 was rotated (the alternative item always being upright). The third factor was the

orientation of the rotated item (0, 30, 60, 90, 1808). Thirty-two of the pictures served as

critical items. Sixteen of these always appeared in the C2 position. On repeated trials,

these were paired with the identical picture appearing in the C1 position, while on non-

repeated trials they were paired with the other 16 pictures at C1 (see Fig. 1). The two

groups of 16 pictures had similar complexity and familiarity ratings (mean visual

complexity: 3.04 and 3.31, respectively, tð15Þ ¼ 0:30; mean familiarity: 3.72 and 3.56,

respectively, tð15Þ ¼ 0:17; Snodgrass & Vanderwart, 1980). The remaining 32 pictures

served as intervening stimuli between the two critical items. In this experiment, all

intervening items between C1 and C2 were displayed in the upright orientation. Thus,

there were 16 trials in each condition, making a total of 320 experimental trials

(2 £ 2 £ 5 £ 16).

1.1.4. Procedure

The experiment was conducted under normal illumination conditions and lasted about

1 h. The subjects were seated approximately 45 cm in front of the computer monitor and

gave their responses verbally; these were coded by the experimenter. Before the

experiment, subjects completed a familiarisation phase in which they saw all the pictures

(in their upright orientation) and named them. Any naming errors were corrected at this

stage.

The experiment was self-paced and the participants initiated each trial by pressing the

space bar. Each trial consisted of three pattern masks, followed by the three pictures

Fig. 1. Graphical representation of the experimental design. Three factors were manipulated: (1) the relationship

between the critical items (same or different object); (2) the orientation of the rotated item; and (3) whether the

first (C1) or second (C2) item of the pair was rotated. The critical items depicted here were separated by an

intervening object (not shown).
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(C1, intervening item, C2), followed by the same three pattern masks in reverse order.

Each of these frames was presented for 100 ms. At the end of the trial, a message appeared

on the screen prompting the subject to recall all the pictures seen. They were told that

sometimes a picture was repeated and, if that was the case, they should name it twice. In

addition to the 320 experimental trials, 32 filler trials containing only two pictures (and an

extra mask) were included, in order to discourage subjects from guessing the presence of

an undetected repeated picture. The order of the trials was random. Before the start of the

experiment, subjects received 32 practice trials at increasingly fast presentation rates

ranging from 500 ms per picture (8 trials), to 150 ms per picture (8 trials), to 100 ms per

picture (16 trials).

1.2. Results

Trials on which neither one of the critical items (C1 or C2) were recalled were

discarded. This means that, for repeated objects, only trials for which we could be sure that

the object representation of interest had been activated (i.e. the object was named at least

once) were counted.1 For symmetry, the same criterion was applied to non-repeated items.

The data were then scored in terms of percent of trials in which both C1 and C2 were

correctly recalled and are presented in Fig. 2, plotted separately for trials in which C1 or

C2 was the rotated item.

A repeated measures ANOVA revealed a significant main effect of Repetition

(same-object trials vs. different-object trials), Fð1; 23Þ ¼ 8:76; P ¼ 0:007; with lower

overall accuracy for repeated pictures than for non-repeated pictures. There was also a

significant difference between trials in which C1 was rotated compared to those in which

C2 was rotated, Fð1; 23Þ ¼ 5:78; P ¼ 0:025; and a significant main effect of Orientation

Fig. 2. Mean percent correct recall of both C1 and C2 in Experiment 1, as a function of orientation, depicted

separately for trials in which C1 or C2 was rotated.

1 We opted for this method, rather than the more stringent method of counting only trials on which C1 was

reported, because it is often impossible to distinguish which one of the repeated items is reported in these tasks.
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Fð4; 92Þ ¼ 4:73; P ¼ 0:002: Repetition did not interact with type of trial, Fð1; 23Þ ¼ 0:91;

suggesting similar patterns of RB regardless of whether C1 or C2 was rotated. However,

there was a significant Repetition £ Orientation interaction, Fð4; 92Þ ¼ 3:28; P ¼ 0:015;

which was due to a reduction in the RB effect when pictures were rotated by 1808

(see Table 1). The 3-way interaction was not significant, Fð4; 92Þ ¼ 0:96; P ¼ 0:43;

illustrating the fact that the reduction in RB for pictures rotated by 1808 was present both

when C1 and C2 were rotated.

Separate ANOVAs were performed for C1-rotated and C2-rotated trials. When C1

was rotated, there was a significant main effect of Repetition, Fð1; 23Þ ¼ 10:08;

P ¼ 0:004; a main effect of Orientation, Fð4; 92Þ ¼ 9:84; P , 0:001 and a significant

Repetition £ Orientation interaction Fð4; 92Þ ¼ 2:77; P ¼ 0:032: Simple comparisons

revealed robust differences between repeated and non-repeated items for 0, 30, 60 and 908

orientation differences (F . 25; P , 0:001), with the size of RB remaining fairly constant

across these conditions (see Table 1). There was also a small difference between repeated

and non-repeated items in the 1808 rotation condition, but this difference was less reliable

and did not survive correction for multiple comparisons (Fð1; 92Þ ¼ 4:34; P ¼ 0:04;

uncorrected for multiple comparisons).

When C2 was rotated, there was a significant main effect of Repetition, Fð1; 23Þ ¼

6:68; P ¼ 0:017; but no effect of Orientation, Fð4; 92Þ ¼ 1:20; P ¼ 0:31 and no interaction

between Repetition and Orientation, Fð4; 92Þ ¼ 1:33; P ¼ 0:27; suggesting that RB did

not change significantly as a function of C2 orientation.

1.3. Discussion

The main finding of Experiment 1 is that RB occurred in all orientation conditions.

Sizeable RB was obtained for orientation differences up to 908, irrespective of whether C1

or C2 was rotated. Significant RB was also obtained for orientation differences of 1808,

although this was much reduced in magnitude and was only reliably present when C2 was

rotated. These results support Kanwisher et al.’s (1999) conclusion that the object

representations involved in the recognition of objects in RSVP streams are orientation-

invariant, and extend those findings to a much wider range of orientations.

Table 1

Size of RB effect in Experiments 1 and 2, as a function of whether C1 or C2 was rotated and the angle of rotation

Experiment 1 Experiment 2

C1 rotated C2 rotated C1 rotated C2 rotated

08 18 12 12 13

308 17 14 14 9

608 15 10 15 11

908 15 17 9 18

1808 6# 8 3 n.s. 23

The size of the RB effect is expressed as the percent difference between non-repeated and repeated items.

Significant RB ðP , 0:01Þ was present in all cases, except as indicated. #P ¼ 0:04; uncorrected for multiple

comparisons.
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It could be argued that the finding of RB for rotated objects does not necessarily imply

the existence of orientation-invariant object representations, but could equally well be

explained by orientation-dependent representations and processes that compensate for

orientation differences. In other words, it is possible that RB arises at a later stage of

processing, after viewpoint-dependent representations have been normalised and object

constancy has been achieved. However, there are at least two reasons to doubt this

interpretation. First, if RB reflected object constancy following some normalisation

process that compensates for orientation differences, one might expect the size of the RB

effect to be systematically affected by the magnitude of the orientation difference between

the items. Our results do not conform to this pattern, as the size of RB was fairly constant

across orientations, with the sole exception of 1808. Second, an inspection of the accuracy

with which subjects reported the item presented between C1 and C2 revealed a difference

between repeated and different-object trials. The middle item was reported considerably

more often when it occurred between repeated objects (85% correct) than when it occurred

between two different objects (72% correct), a difference that was highly significant

(Fð1; 23Þ ¼ 223:01; P , 0:0001). This finding suggests that the repeated objects required

less processing and, consequently, more attentional resources were available for

processing the middle item. Such a finding cannot be easily accommodated by the notion

that RB is due to processes that compensate for orientation differences between viewpoint-

dependent object representations, because presumably such processes, and their respective

attentional demands, would be the same in repeated and different-object trials. On the

other hand, this result is precisely what one would expect to see if fewer types were

activated during the repetition trials compared to the different-object trials (i.e. 2 instead

of 3). On balance, then, the pattern of results seems to be more easily accommodated by

the idea that the repeated objects activate a unique orientation-invariant representation.2

We return to this issue in Section 4.1.

The conclusion that the object representations that mediate recognition and RB are

orientation-invariant is somewhat at odds with the finding that overall accuracy, for both

repeated and non-repeated objects, decreased as a function of orientation when C1 was the

rotated item. This finding is reminiscent of many reports in the literature that reaction time

increases in a near-linear fashion as an object is rotated further away from the canonical

orientation (Jolicoeur, 1985; Murray, 1995; Tarr & Pinker, 1989), a result that has been

consistently interpreted as evidence for viewpoint-dependent object recognition. Again,

though, some features of the results speak against an interpretation of this effect in terms of

viewpoint-dependent recognition. First of all, as outlined in the introduction, if recognition

were mediated by viewpoint-dependent representations, one would expect to see either no

RB, or at least a fairly systematic modulation of the RB effect across changes in

orientation. This was clearly not the case, as RB was present and of a similar magnitude

across orientation changes, with the sole exception of 1808 rotations. Second, the decrease

2 A reviewer questioned whether this effect might be due to the fact that it may be easier to remember the

middle item when it occurred between repeated items because that situation only requires the subject to remember

two identities, rather than three. An explanation in terms of memory failure seems unlikely in the present study,

given that the subjects only ever had to remember a maximum of three items, which is well within the limits of

short-term memory. In addition, numerous studies in the RB literature have shown that RB under these conditions

occurs at a perceptual, rather than memory, level (Chun, 1997; Chun & Cavanagh, 1997).
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in overall accuracy across orientations was only seen when C1 was rotated but not when

C2 was rotated. It is difficult to explain this discrepancy in terms of processes involved in

the recognition of individual items, as one would expect these to be the same in both

situations (the individual items were identical in the two types of trial, the only difference

being the relative order of the upright vs. rotated critical items). Therefore, it seems more

likely that the discrepancy in the patterns of performance is due to differences at the level

of trial structure, rather than individual item recognition. This raises the interesting

possibility that the viewpoint-dependent effects seen when C1 is rotated might be related

to a processing bottleneck that occurs at a later, post-recognition, stage. We will return to

this issue in Section 4.3.

An intriguing finding of this experiment is that the size of RB was reduced for rotations of

1808, in particular when C1 was rotated. One way to interpret this reduction in RB is to

assume that upright and upside-down objects are sufficiently different from each other to

activate different representations. This would imply some degree of viewpoint-dependency,

although it is difficult to see why this should only be the case for 1808 rotations and not for

other large orientation differences such as 908, or even 608. An alternative explanation for

the reduction in RB in this case is that the two instances of a repeated picture activate the

same (orientation-invariant) representation, but it is easier to individuate the two when one

is upright and the other is upside-down. This could happen if it were easier to determine the

upside-down orientation compared to other orientations, a pattern that is in fact exhibited by

some patients with object orientation agnosia (Harris et al., 2001; Karnath et al., 2000).

Thus, having established relatively quickly that an object was upside-down, this would

enable subjects to encode the two repeated objects as different instances, one upright and

one upside-down. In contrast, if it were more difficult to determine the other orientations,

then under RSVP conditions subjects may not be able to extract sufficient orientation

information from the rotated item to be confident that it is indeed different from another

occurrence of that same object on that trial. Such a situation would lead to larger RB.

If this latter explanation is correct, we would expect that increasing the orientation

processing demands during the task (for example, by showing most of the objects in non-

upright orientations) should result in more RB in the case of objects rotated by 1808,

because it would interfere with subjects’ ability to individuate repeated objects on the

basis of orientation. This prediction was tested in Experiment 2.

2. Experiment 2

This experiment investigated whether increasing the orientation processing demands of

the task would make it more difficult for subjects to use orientation as a way of

differentiating two repeated objects, resulting in robust RB even for objects rotated by

1808. The orientation processing demands of the task were increased by presenting the

intervening item (that presented between C1 and C2) rotated away from the upright; the

experiment was otherwise identical to Experiment 1. This means that, on most trials of this

experiment, two of the three pictures were presented in non-upright orientations

(the exception being the trials on which both critical items were upright). Moreover, the

pictures always differed from each other by at least 608, with the expectation that this

I.M. Harris, P.E. Dux / Cognition 95 (2005) 73–9382



would place considerable strain on subjects’ ability to extract orientation information

under the RSVP conditions of the experiments.

2.1. Method

2.1.1. Subjects

Twenty-four undergraduate students (7 males) aged 17–41 years (mean ¼ 22) took

part in this experiment and were paid $10 for participation. None had participated in the

previous experiment.

2.1.2. Stimuli and design

The design of the experiment was identical in every respect to Experiment 1, except

that here the intervening item was rotated away from the upright. This middle item could

be in one of three orientations: 60, 90 or 1808, chosen such that the intervening item always

differed from the critical items by at least 608.

2.2. Results

As in Experiment 1, the data were scored in terms of percent of trials in which both C1

and C2 were correctly recalled, excluding any trials on which both critical items went

unreported. The results are presented in Fig. 3, plotted separately for trials in which C1 or

C2 was rotated.

A repeated-measures ANOVA revealed a significant main effect of Repetition,

Fð1; 23Þ ¼ 8:68; P ¼ 0:007; a significant difference between trials in which C1 or C2 was

rotated, Fð1; 23Þ ¼ 11:53; P ¼ 0:003; and a significant effect of Orientation,

Fð1; 23Þ ¼ 10:33; P , 0:001: In this experiment, there was a significant Repetition £ type

of trial interaction, Fð4; 92Þ ¼ 6:50; P ¼ 0:018; which indicates different patterns of

RB when C1 was rotated compared to when C2 was rotated. There was also a significant

Fig. 3. Mean percent correct recall of both C1 and C2 in Experiment 2, as a function of orientation, depicted

separately for trials in which C1 or C2 was rotated.
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3-way interaction, Fð4; 92Þ ¼ 5:93; P , 0:001; suggesting that RB was modulated

differently by item orientation on trials when C1 was rotated compared to trials when C2

was rotated. This effect is clearly illustrated in Fig. 3, which shows a loss of RB when C1

was rotated by 1808, but an increase in RB when C2 was rotated by 1808 (see also Table 1).

Separate ANOVAs were carried out for C1-rotated and C2-rotated trials. When C1 was

rotated, there was a main effect of Repetition, Fð1; 23Þ ¼ 6:26; P ¼ 0:02; a significant

effect of Orientation, Fð1; 23Þ ¼ 17:89; P , 0:001; and a marginal Repetition £

Orientation interaction, Fð4; 92Þ ¼ 2:26; P ¼ 0:069: Simple comparisons revealed

significant differences between repeated and non-repeated items for orientation differences

of 0, 30, 60 and 908 (F . 9:18; P , 0:003), but not 1808, Fð1; 92Þ ¼ 1:06; P ¼ 0:30:

When C2 was rotated, there was a significant main effect of Repetition,

Fð1; 23Þ ¼ 10:62; P ¼ 0:004; but no overall effect of Orientation, Fð1; 23Þ ¼ 1:64;

P ¼ 0:174: There was, however, a significant Repetition £ Orientation interaction,

Fð4; 92Þ ¼ 4:33; P ¼ 0:003: Simple comparisons revealed significant RB at all

orientations (F . 12:85; P , 0:001), although the size of the RB effect did vary across

orientation conditions, which accounts for the significant interaction. In particular, there

was a dramatic increase in RB when C2 was rotated by 1808 as well as a tendency for RB

to increase when C2 was rotated by 908, compared to smaller angles (see Table 1).

2.3. Discussion

This experiment replicated all the main findings of Experiment 1. As in Experiment 1,

we found consistent RB for orientations up to 908, regardless of whether C1 or C2 was

rotated, but in addition, in the present experiment we obtained very large RB when C2 was

rotated by 1808. This result makes the reduction in RB at 1808 seen in Experiment 1

difficult to accommodate within a viewpoint-dependent framework. We elaborate this

point further in Section 4.2.

The findings of this experiment support the conclusion that the reduction in RB

between upright and upside-down objects seen in Experiment 1 is due to easier processing,

and therefore better individuation, of these particular orientations. In the present

experiment, preceding the upside-down C2 by a rotated distractor presumably made it

more difficult to process its orientation and consolidate it into a stable object token,

resulting in increased RB compared to Experiment 1. In contrast, when C1 was

upside-down we found the same pattern of results as in Experiment 1, that is, a loss of RB.

Presumably this is due to the fact that the first item in the sequence receives no interference

from preceding items and, therefore, its orientation is more likely to be processed and

identified as different from the upright C2.

3. Experiment 3

The results of the first two experiments suggest that the upright (08) and upside-down

(1808) orientations may be processed more easily than other orientations (30, 60, 908). In

this experiment, we investigated whether the accuracy with which people explicitly judge

the orientation of a briefly presented object depends on the orientation of the object.

I.M. Harris, P.E. Dux / Cognition 95 (2005) 73–9384



Since there was no evidence from Experiments 1 and 2 of any particular differences

amongst the orientations of 30, 60 and 908, in this experiment we used only objects that

were upright, upside-down, or rotated by 908 (clockwise and anti-clockwise). This

combination of orientations minimised working memory demands and provided a

convenient and straightforward set that participants could respond to using the arrow keys

on the keyboard.

3.1. Method

3.1.1. Subjects

Twenty-four first year psychology students (6 males), aged 18–38 (mean ¼ 22),

participated for course credit. None had participated in either of the previous experiments.

3.1.2. Apparatus

This was the same as in Experiments 1 and 2.

3.1.3. Stimuli and design

Ninety-six line drawings with an obvious canonical upright orientation were selected

from the Snodgrass and Vanderwart (1980) corpus. Six masks similar to those used in

Experiments 1 and 2 were also used. The 96 pictures were divided into four sets of 24

pictures, matched for familiarity and visual complexity based on norms from Snodgrass

and Vanderwart. Each set was presented in one of four orientations: 0, 90, 180, or 2708

(i.e. 908 anti-clockwise). Within each set of 24 items, one-third (8 pictures) were

presented for each of the following durations: 42, 67, and 100 ms. Four versions of the

experiment were constructed, with each set of 24 items appearing in a different

orientation in each version, meaning that across the whole experiment each object

appeared in all four orientations. The order of the trials was randomised, with the

restriction that no more than three consecutive trials could have the same orientation or

the same exposure duration.

3.1.4. Procedure

Following 15 practice trials, each subject completed one version of the experiment (96

trials in total) in a session lasting approximately 15 min. The experiment was self-paced

and the participant advanced to the next trial by pressing the space bar. Each trial began

with a fixation cross displayed for 1 s. This was followed by the picture (with variable

exposure duration) and then a mask presented for 250 ms. The mask was replaced by a

blank screen for 1 s, followed by the word ‘Ready’. The subjects had to indicate the

orientation of the picture by pressing one of the four arrow keys on the keyboard,

corresponding to ‘up’ (08), ‘down’ (1808), ‘rotated right’ (908) and ‘rotated left’ (2708).

3.2. Results

Percent correct responses for the different orientations and time exposures are shown in

Fig. 4. The data were analysed using a 3 (Exposure duration: 42, 67, 100 ms) £ 4

(Orientation: 0, 90, 180, 2708) within-subjects ANOVA. There was a significant effect of
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Exposure duration, Fð2; 23Þ ¼ 47:15; P , 0:001; with accuracy increasing systematically

with exposure duration. There was also a significant effect of Orientation, Fð3; 69Þ ¼ 10:95;

P , 0:001; but no Exposure £ Orientation interaction, Fð6; 138Þ ¼ 0:74; P ¼ 0:62: As can

be seen in Fig. 4, the pattern of performance across orientations was remarkably consistent

for all exposure durations. Across all exposures, participants were significantly more

accurate at judging the orientation of upright and upside-down objects compared with

objects rotated by 908, as revealed by a contrast with weights 1 21 1 21 for orientations 0,

90, 180, 2708, Fð1; 69Þ ¼ 31:01;P , 0:001:Accuracy did not differ for upright compared to

upside-down objects, Fð1; 69Þ ¼ 1:03; P ¼ 0:31; or between the two 908 orientations,

Fð1; 69Þ ¼ 0:81; P ¼ 0:37:

3.3. Discussion

This experiment clearly demonstrates that it is easier to determine the orientation of an

upright or upside-down object compared to objects rotated by 908. This difference was

remarkably consistent across the three exposure durations, ranging from very brief (42 ms)

to reasonably lengthy (100 ms) exposure durations. Interestingly, contrary to what one

might expect, it seems just as easy to extract the orientation of an upside-down object as it

is to process the orientation of an upright object. In contrast, determining the orientation of

an item rotated by 908 seems to require more time. We have argued previously that this is

due to the fact that an additional step of locating the top-bottom axis of an object must be

performed for rotations of 908, a step which can be circumvented in the case of upright and

upside-down objects (Harris et al., 2001).

It is important to note that even when the picture was displayed for 100 ms performance

was not at ceiling. Extrapolating from these results, one would expect that extracting

orientation information from a picture presented for 100 ms in a stream of other pictures,

forward and backward masked, as in Experiments 1 and 2, should prove to be even more

difficult. Thus, the present results provide an explanation as to why subjects were mostly

Fig. 4. Mean percent correct orientation judgements in Experiment 3, as a function of stimulus orientation and

exposure duration.
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unable to use orientation as an individuating feature in Experiments 1 and 2, resulting in

RB for identical objects presented in different orientations. They also provide an

explanation for why RB was sometimes reduced or lost when the critical items were

upright and upside-down, because that situation allows for more rapid processing of

orientation and, therefore, allows orientation to be used as an individuating feature.

4. General discussion

The present study used a RB paradigm to investigate whether the object representations

generated outside conscious awareness are orientation-dependent or orientation-invariant.

The principal finding was that RB occurred across changes in object orientation ranging

from 30 to 1808. These results replicate and extend those reported by Kanwisher et al.

(1999) and provide support for the suggestion that these object representations are

orientation-invariant. Our results also revealed that orientation plays an important role in

individuating two instances of a repeated object, leading to a reduction, and at times

complete loss, of RB in cases where orientation is relatively easily extracted from brief

visual displays. We will discuss each of these findings in turn, together with their

implications for theories of object recognition.

4.1. Orientation-invariant object representations

Experiments 1 and 2 revealed sizeable RB when objects differed in orientation by up to

908, regardless of whether C1 or C2 was rotated. Significant RB was also found for

orientation differences of 1808, although this latter result was only obtained under certain

conditions. Nevertheless, the fact that RB could be obtained for rotations of 1808, together

with the lack of any systematic modulation of the RB effect as a function of orientation, is

most consistent with the idea that the object representations that mediate RB, and

implicitly, object recognition are orientation-invariant. Moreover, this conclusion is

supported by the fact that the item intervening between C1 and C2 was recognised more

accurately if it occurred between repetitions of the same object compared to when C1 and

C2 were different objects. This finding implies that repetition trials require overall less

processing, just as might be expected if they involved only two object representations

(i.e. a single representation of the critical items and one distractor) as opposed to three

(i.e. two separate critical items and one distractor).

A point of contention is whether these findings necessarily implicate orientation-

invariant visual representations, as opposed to semantic representations that are, by

definition, orientation-invariant (Arnell & Jolicoeur, 1997). In other words, it is possible

that the RB obtained for our rotated objects might be based entirely on semantic

representations, in which case the finding of orientation-invariance would be unsurprising.

Kanwisher et al. (1999) have found some evidence of RB for different exemplars of the

same basic-level object (e.g. grand piano and upright piano), as well as for semantically

related objects (e.g. airplane, helicopter). Furthermore, Bavelier (1994) found RB between

pictures and words depicting the same object, so an explanation in terms of semantic RB is

plausible. However, we believe that there is enough evidence supporting the notion that
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the orientation-invariant RB seen here is based on visual representations. First, other

studies have demonstrated RB for pseudo-objects that have no semantic representation

(Arnell & Jolicoeur, 1997), which indicates that visual patterns of a structural complexity

comparable to our objects can produce RB. Second, and more pertinent to the present

study, Coltheart, Mondy, and Moore (2001) have found RB for non-objects rotated by 308

in depth and in the picture-plane, a finding which is consistent with orientation-invariant

visual RB. Finally, in some of the conditions of the present experiments, we found a

reduction in RB for objects rotated by 1808. Such a modulation of the RB effect would not

be expected if RB was based purely on a semantic representation.

Thus, this study provides evidence for the rapid extraction of orientation-invariant

object representations which are most likely visuo-perceptual in nature. Our findings

suggest that these representations are formed early in the recognition process, they are

elaborate enough to identify an object, but often fail to be perceived consciously. This is

illustrated by the fact that subjects are sensitive to the repetition of an object, indicating

that the repetition has been identified as such at some level, yet they fail to report the item,

which indicates that it did not reach awareness. Within a type–token framework, these

representations are conceptualised as identity types which, due to the spatio-temporal

constraints of the RSVP procedure, are not successfully token-individuated and

consequently are not perceived as separate events (Chun, 1997; Kanwisher, 1987).

Our results imply that orientation is not a defining feature of the object representations

that mediate pre-conscious stages of object recognition. Together with the findings from

patients with orientation agnosia, who are clearly able to recognise rotated objects despite

not knowing their orientation, these results provide strong support for viewpoint-invariant

theories of object recognition. Moreover, they indicate that viewpoint-invariance is

apparent even in the early (pre-conscious) stages of recognition, a view that is not easily

accommodated by Marr’s (1980) theory, which states that a viewpoint-dependent

representation precedes the formation of an object-centred representation. Thus, our

results are more in line with theories that do not invoke any such viewpoint-dependent

representations (e.g. Corballis, 1988; Deutsch, 1955).

Interestingly, our results of complete invariance with respect to orientation in the

picture-plane go even beyond the predictions of some viewpoint-invariant models of

object recognition, which argue that objects are represented as structural descriptions of

component features (geons) and the relations between them (Biederman, 1987; Hummel &

Biederman, 1992). Although these models predict viewpoint-invariance across rotations in

depth (barring geon occlusion), they predict some costs associated with rotations in the

picture-plane. These costs arise because the spatial relations between geons are perturbed

by picture-plane rotations, such that an ‘above’ relation between two geons in an upright

object becomes a ‘beside’ relation if the object is rotated by up to 1808, or a ‘below’

relation if the object is inverted (Hummel & Biederman, 1992). However, Biederman has

suggested that such costs are possibly less likely to be due to orientation-dependent

processing of individual geons, and more to do with perturbations of ‘top-of’ relations

(Biederman, 1987, p. 140)—that is, a change in the global orientation of the object. In

other words, recognition costs incurred by objects rotated in the picture-plane may be

due to processes involved in determining the orientation of the object, rather than its
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identity, a position that has also been argued recently by a number of other authors (De

Caro & Reeves, 2000; Harris & Dux, 2004, see below for further discussion).

Given this, one might surmise that our present findings of orientation-invariance in the

picture-plane may in fact provide a stronger test for the existence of viewpoint-invariant

object representations than invariance across depth rotations. However, it appears that

these representations may not give rise to fully conscious recognition in the absence of

information about the object’s orientation, as we shall argue below.

4.2. Orientation as an individuating feature

A second important finding of this study, replicated in two experiments, is that RB was

substantially reduced, and sometimes eliminated, when two identical objects differed by

1808. While this could be taken as evidence against our conclusion that the object

representations are orientation-invariant, we argue that this reduction in RB is due to the

fact that it is easier to individuate two objects when one is upright and the other is upside-

down, rather than being due to the activation of different viewpoint-dependent

representations. Several lines of evidence support this premise.

First, the results of Experiment 3 indicate that judging the orientation of upright and

upside-down objects is significantly easier than judging other orientations (e.g. 908). This

result echoes earlier findings from a patient with agnosia for object orientation, who could

discriminate between an upright and an upside-down object with much greater accuracy

than between other orientations (Harris et al., 2001). Therefore, on trials in which the

critical items are upright and rotated by 1808 subjects would have a greater chance of

processing not only the identity of the objects, but also their orientation. This additional

information would help them encode the two repeated objects as different instances, based

on the different orientation descriptions (upright vs. upside-down), and thus reduce

susceptibility to RB. In contrast, for more difficult orientations subjects may not be able to

extract sufficient orientation information from the rotated item to be confident that it is

different from another presentation of that same object on that trial.

Second, the reduction in RB for objects rotated by 1808 occurred in some circumstances

but not others. Specifically, RB was reduced when the first object of the RSVP stream (C1)

was rotated, but not when the third object (C2) was rotated. It is hard to see how viewpoint-

dependent representations would explain this pattern of results, because it would imply

that trials in which C1 is rotated and trials in which C2 is rotated employ different kinds of

representations (viewpoint-dependent in the first case, viewpoint-invariant in the latter).

On the other hand, this pattern of results can be accommodated by the idea that orientation

information may be used to individuate repetitions of the same object. Specifically, we

would expect that determining the orientation of the first item of the series is easier than

determining the orientation of the last item, because the first item would gain privileged

access to the tokenisation process, with no interference from preceding items. As such,

when C1 is rotated by 1808, subjects would be more successful at consolidating its

orientation and differentiating it from C2, resulting in a reduction or loss of RB.

Conversely, when C2 is rotated by 1808, processing its orientation and creating an object

token would be hampered to some extent by the preceding items in the stream. As a

consequence, subjects would not have sufficiently reliable information to allow them to
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individuate the two instances of the object. Further support for this explanation comes

from the fact that when C2 was rotated by 1808, the size of RB was modulated by the

orientation of the preceding distractor. Smaller RB was seen in Experiment 1, where the

distractor was upright, presumably because this distractor would not require much

orientation processing. Much larger RB was seen in Experiment 2, where the distractor

was rotated (by 60 or 908 in this specific case), because processing the orientation of the

distractor would have taken considerable time and effort and this would have prevented

subjects from processing the orientation of C2 in the short time available.

Thus, a second major conclusion that emerges from this study is that, although object

identity can be determined independently of orientation, orientation nonetheless plays a

crucial role in establishing distinct episodic representations of a repeated object, thus

enabling one to report them as separate events. These results fit well with the model

proposed by Chun (1997), in which identity information and spatio-temporal tokens (e.g.

orientation, in this case) are extracted relatively independently from a visual stimulus, but

need to be bound together into an object token before they are available for report. Chun

suggested that RB results from a failure to consolidate different spatio-temporal tokens

into separate object tokens, just as seems to be the case in our experiments, when the

orientation of the repeated object is difficult to resolve in the time available.

4.3. Binding identity to orientation—the processing bottleneck?

Our conclusion that orientation-invariant object representations mediate recognition

and RB may appear difficult to defend in the face of many findings reported in the

literature, which suggest that object recognition is sensitive to viewpoint and orientation

(e.g. Hayward, Tarr, & Corderoy, 1999; Jolicoeur, 1985; Murray, 1995; Tarr, 1995; Tarr &

Pinker, 1989). Such studies have typically found that the time to name rotated objects

increases systematically as the object is rotated further from the upright, a cost which is

usually interpreted as arising from a normalisation of the visual input prior to recognition.

However, other empirical results indicate that observers determine the identity of an object

before they determine its orientation (Corballis et al., 1978; De Caro, 1998; De Caro &

Reeves, 2000), a finding which seems to negate the need to compensate for orientation in

order to determine identity. Furthermore, De Caro and Reeves (2000) have compared the

effects of stimulus orientation on determining the identity vs. the orientation of a briefly

presented, masked, object. They found that the time needed to verify the object’s

orientation increased systematically as a function of the object’s rotation from the upright.

In contrast, the time required to verify the object’s identity was quite uniform across non-

upright orientations, though longer overall than for upright objects. The authors concluded

that the linear orientation effects seen in naming tasks are actually due to a process of

determining the object’s orientation, and that this process occurs after recognition.

This conclusion is supported by recent findings from a patient with agnosia for object

orientation, who displayed a flat reaction time function when naming rotated

objects (Turnbull, Della Sala, & Beschin, 2002). Note that this patient can recognise

objects equally well at all orientations, but cannot interpret their orientations.

Moreover, careful consideration of data from other patients with orientation agnosia

also reveals that, although some of these patients demonstrate residual sensitivity to
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orientation (Harris et al., 2001; Karnath et al., 2000), these effects are only apparent on

tasks that require orientation judgements, rather than recognition.

The findings discussed above are consistent with our present conclusion that

recognition is mediated by orientation-invariant object representations. However, our

present findings also indicate that establishing the orientation of an object is an important

step in forming a distinct episodic representation of the object, thus enabling one to report

it as a separate visual event. Thus, we agree with Chun (1997), that the type (i.e. object

identity) needs to be bound to a spatio-temporal token (i.e. the object’s orientation at a

particular moment) before it is available for overt report (see Harris & Dux, 2004 for

further elaboration of this idea). As outlined in the introduction, this binding process is

attention-demanding and capacity-limited, which creates a potential bottleneck in

processing (see also Treisman & Gelade, 1980). Thus, if the time taken to process either

of these attributes exceeds the available time, this could result in a failure to consolidate

the initial representations of these attributes into a durable object token. This scenario can

explain, for example, the decrease in overall accuracy as C1 was rotated further from the

upright that was found in Experiments 1 and 2. In those cases, the orientation of C1 would

have been more difficult to determine, introducing a delay during which the representation

of that object, and subsequent ones, would have decayed before being consolidated into a

form accessible for overt report.3 This explanation also provides a rationale for the naming

costs incurred by rotated objects, even without the time constraints of RSVP, as the

object’s orientation would need to be determined, bound to the object’s identity and

consolidated, before the object is available for overt report.

To conclude, then, the present study has found evidence for the existence of

orientation-invariant object representations that mediate the early stages of object

recognition. At the same time, however, our findings indicate that determining the

orientation of the object is an essential step in creating a conscious episodic representation

of the object, which allows individuation and overt report.
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